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SI1: Previous biological models of sameness detection 1 

Two broad classes of mechanisms have been proposed for determining 2 

whether two stimuli are identical (Grill-Spector, Henson, & Martin, 2006; 3 

Kumaran & Maguire, 2007). On the one hand, sequentially presented identical 4 

stimuli elicit less activation, due to neuronal “fatigue” or sharpening of the 5 

representations. As a result, novel, non-repeated representations have relatively 6 

higher levels of activation. However, such models cannot explain why sameness-7 

relations can be generalized: after detecting the repetition in babagu, an item with 8 

new syllables and the same repetition-pattern (e.g., wowofe) will be just as 9 

unfamiliar as an item with new syllables and another repetition-pattern (e.g., 10 

wofefe). As a result, an explicit representation of sameness vs. difference (or 11 

match vs. non-match) is required (but see Cope et al., 2018, where generalization 12 

is observed under some circumstances). 13 

The second class of mechanisms involves some kind of comparator 14 

between memory representations and sensory input, though there are few explicit 15 

and biologically realistic models of sameness matches. For example, it has been 16 

proposed that the hippocampal CA1 region (and maybe the CA3 region, 17 

depending on the studies) are crucial for detecting matches between memory 18 

representations and sensory input (while the CA3 regions might have an 19 

additional role in retrieving associations; Hasselmo, 2005; Lisman, 1999; Lisman 20 

& Otmakhova, 2001).  21 

We will now discuss a number of representative models to illustrate these 22 

points.  23 

SI1.1. Hasselmo and Wyble (1997), Carpenter and Grossberg (1987), Wen, Ulloa, 24 
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Husain, Horwitz, and Contreras-Vidal (2008) 25 

In their simulation of memory retrieval in the hippocampus, Hasselmo and 26 

Wyble (1997) provide an explicit model of comparator-based sameness detection, 27 

inspired by the anatomy of the trisynaptic circuit. Specifically, the hippocampus 28 

receives sensory input from the entorhinal cortex, which in turn projects to region 29 

CA3 (via the dentate gyrus). In contrast, CA1 receives input both from CA3 (via 30 

the Schaffer collaterals) as well as directly from the entorhinal cortex. If 31 

memories are encoded in CA3, the simultaneous input from the entorhinal cortex 32 

and CA3 might allow CA1 to detect matches between sensory input (from the 33 

entorhinal cortex) and memory representations (from CA3).  34 

Specifically, during encoding of novel items, combined sensory and 35 

memory (from CA1) input leads to novel self-organized representations in CA1. 36 

To activate these representations during recognition (i.e., to enter the 37 

corresponding attractor state), input from both the entorhinal cortex and CA3 is 38 

required; sensory input alone does not activate the attractor state. In other words, 39 

CA1 enters an attractor state only when the current sensory input matches 40 

currently active memory representations in CA3 (see also Ludueña & Gros, 2013, 41 

for a model that uses anti-Hebbian learning to configure a mismatch detector). 42 

Relatedly, some working memory models detect matches between the 43 

contents of working memory and current sensory input by adding input from 44 

sensory input and WM (Carpenter & Grossberg, 1987; Wen et al., 2008). If an 45 

item is in WM, it will provide an additional input. As a result, matches between 46 

sensory input and WM can be detected using some threshold (though such a 47 

mechanism might not be robust as it depends on the absolute fire firing rates; 48 
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Engel & Wang, 2011). 49 

SI1.2. Engel and Wang (2011) 50 

While these models detect matches because the combined output of 51 

memory representations and matching sensory input trigger the retrieval of other 52 

representations, it is also possible to detect matches by subtracting sensory input 53 

and memory representation. Such a model has been proposed in the context of 54 

delayed-match-to-sample tasks. Specifically, Engel and Wang (2011) proposed a 55 

biologically realistic model that detects matches through (i) a working memory 56 

(WM) sub-network, (ii) a comparator sub-network, and (iii) a decision network 57 

receiving input from the comparator network. Neurons in the WM network 58 

receive sensory input (but only when attention is directed to the input) and can 59 

maintain memory traces through self-excitation. Critically, the comparator 60 

network is composed of two distinct populations. One receives both sensory input 61 

and input from the WM network (hereafter called sensory+WM neurons). The 62 

other receives only sensory input but no WM input (hereafter called sensory-only 63 

neurons). Engel and Wang (2011) make two other critical assumptions. First, they 64 

assume that the total level of excitation should be similar for matches in the 65 

sensory+WM population, and for mismatches in the sensory-only population; as 66 

the sensory+WM population has an extra excitatory input, they achieved this by 67 

scaling down the synaptic excitation targeting the sensory+WM population. 68 

Second, the comparator units show center-surround inhibition: there is a (limited 69 

level of) excitation from similar stimuli, and much stronger inhibition from 70 

dissimilar stimuli.  71 

These assumptions conspire to yield stronger activation in the 72 
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sensory+WM population for matches, and stronger activation in the sensory-only 73 

population for mismatches. As a result, to decide whether a probe matches the 74 

target, the decision network just needs to compare the activation of the 75 

sensory+WM population and the sensory-only populations. More specifically, in 76 

the matching case, the sensory+WM neurons receive input both from the probe 77 

and from the matching content of WM; in contrast, the sensory-only neurons 78 

receive input only from the sensory representations of the probe. As a result, there 79 

is stronger activation in the sensory+WM population. In contrast, in the case of a 80 

mismatch, both populations receive input from the sensory representations of the 81 

probe. 82 

As Engel and Wang (2011) assume that excitatory input is stronger for the 83 

sensory-only population, this population is expected to receive somewhat stronger 84 

input than the sensory+WM population. Further, the sensory+WM population also 85 

receives input from the (mismatching) WM representation; due to the center-86 

surround inhibition in the network, the probe and the (mismatching) target inhibit 87 

each other, further reducing the activation in the sensory+WM population. The 88 

decision network just has to decide whether similar orientations have stronger 89 

presentation in the sensory+WM population or the sensory-only population.1  90 

SI1.3. Johnson,	Spencer,	Luck,	&	Schöner	(2009) 91 

Another WM model that explicitly incorporates a same/different 92 

distinction has been proposed by Johnson et al. (2009). In their model, sensory 93 

  
1

 This model assumes that WM is mediated by self-sustained activity in a population of 
neurons. However, it has been questioned whether such self-sustained activation really plays a 
crucial role in WM (Rose et al., 2016; Stokes, 2015).  
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input excites (self-sustained) WM representations, which, in turn, inhibits the 94 

corresponding sensory activation (with center-surround inhibition in all areas). As 95 

a result, upon presentation of the sample stimulus, there is a self-sustained 96 

representation of the memory items in WM, but little activation in sensory areas 97 

due to the inhibitory input from WM. Hence, if a later sensory input matches the 98 

items in memory, the sensory areas will remain largely silent. In contrast, if the 99 

sensory input differs from the memory items, sensory input will be uninhibited. 100 

Hence, in this model, “decision” neurons that receive excitation from WM will 101 

respond to matches, while decision neurons receiving excitation from sensory 102 

input will respond to mismatches, at least with mutual inhibition between these 103 

decision populations.  104 

However, there are a number of problems with this model. First, it has 105 

been questioned whether WM really relies on self-sustained activity (Rose et al., 106 

2016; Stokes, 2015). Second, and crucially, items in (working) memory seem to 107 

attract attention (Awh & Jonides, 2001; Downing, 2000; Fan & Turk-Browne, 108 

2016) which seems inconsistent with the proposal that memory items suppress 109 

perceptual input. 110 

SI1.4. Difficulties of these models with generalizable repetition patterns 111 

In their current instantiations such models are unlikely to account for the 112 

generalization of sameness relatoions (nor were these models intended to do so). 113 

For example, after exposure to pupu, they are unlikely to recognize baba over, 114 

say, bapu when the syllables are novel. In Hasselmo and Wyble’s (1997) model, 115 

items like baba have no memory representation, and thus cannot trigger CA1-like 116 

activation any more than bapu sequences. That said, a version of Hasselmo and 117 
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Wyble’s (1997) model might act as a repetition-detector if each item undergoes 118 

element-by-element encoding-retrieval cycles. For example, when processing the 119 

item pupu, the network might first encode the first instance of the syllable pu; 120 

upon presentation of the second instance of pu, a CA1-like structure might enter 121 

an attractor state as the current sensory input matches an existing memory 122 

representation. In contrast, for items like bapu, the second element has no 123 

corresponding existing memory representation, and thus does not activate an 124 

attractor in a CA1-like structure. Hence, a readout mechanism to a CA1-like 125 

structure could, in principle, act as a repetition-detector. 126 

However, there are a number of problems with such an architecture as 127 

well. For example, after exposure to both pupu and bapu, the model might 128 

classify bapu as a repetition, because the syllable pu has an existing memory 129 

representation from a previous item. In other words, the model would show 130 

proactive interference in sameness-detection, and there is no evidence that this 131 

might be the case in real learners. 132 

Likewise, such a model will face difficulties discriminating ABB patterns 133 

as in pulili from ABA patterns as in pulipu. It is also unclear whether a memory-134 

based repetition-detector can detect the sameness of simultaneously (rather than 135 

sequentially) presented items, and whether such models would “recognize” an 136 

item in the presence of distractors; after all, a CA1-like region would receive 137 

input from the distractors as well, which will bring up the total level of activity. 138 

As a result, considerable computational and neuroscientific research is needed to 139 

decide whether such an architecture might act as a repetition-detector. 140 

Similar problems arise Engel and Wang’s (Engel & Wang, 2011) model. 141 
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First, the model would show proactive interference, and falsely detect repetitions 142 

in non-repetition sequences if the second item has been placed in working 143 

memory on a considerable number of earlier occasions. While this is an empirical 144 

prediction, it seems, at first sight, implausible.2 Second, it is unclear whether a 145 

memory-based repetition-detector would be able to detect the sameness of 146 

simultaneously presented items. Third, Engel and Wang (2011) use supervised 147 

training to teach units to subtract the activation of sensory+WM neurons and 148 

sensory-only neurons, respectively. However, in all experiments on repetition 149 

learning in infancy, learning is unsupervised; further, the reliance on supervised 150 

training prevents the model from generalizing to items that are dissimilar from 151 

those it has been trained on (Marcus, 1998a, 1998b). 152 

There is another reason for which such memory-based repetition-detectors 153 

are unlikely to support the kinds of generalizations reviewed here. Given how 154 

widespread the ability to compute repetition-patterns is, one would expect it to 155 

rely on fairly simple circuits. However, these memory-based models rely on the 156 

interaction of different brain areas (the entorhinal cortex as well as CA1 and CA3 157 

in the case of Hasselmo and Wyble’s (1997) model, and a sensory as well as a 158 

working memory system in the case of Engel and Wang’s ( 2011) model).  159 

  
2

 Engel and Wang’s ( 2011) model can detect matches between the A items in ABBA 
trials. However, they achieve this by assuming that the WM subnetwork receives sensory input 
only when the input is attentionally encoded. As a result, only the first A from the ABBA items 
ever reaches WM. However, this would predict that participants do not notice the repetition of the 
B items. It thus seems that the WM component in Engel and Wang’s (2011) has a similar function 
as (pre) frontal regions in the recent models of inhibition (Egner & Hirsch, 2005; Erika-Florence, 
Leech, & Hampshire, 2014; Hampshire & Sharp, 2015): it serves to highlight task-relevant 
representations. 
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SI1.5. Cope et al. (2018) 160 

Cope et al. (2018) proposed a model to explain the successful performance 161 

of bees in delayed-match-to-sample tasks such as in Giurfa, Zhang, Jenett, 162 

Menzel, and Srinivasan (2001). They used a model inspired by the architecture of 163 

the bee mushroom body. At a conceptual level, the model comprises three 164 

populations of neurons: (1) a population of input neurons encoding stimuli 165 

(inspired by Kenyon cells); (2) a population of inhibitory neurons (inspired by the 166 

protocerebellar tract); (3) and a population of output neurons (inspired by 167 

extrinsic neurons), half of which code for a “go” response and half for a “no-go” 168 

response.  169 

The input population has excitatory connections (with fixed weights) to 170 

both the output neurons and the inhibitory neurons; the inhibitory neurons project 171 

to the output neurons as well, but, critically, with weights that are modifiable.  172 

The critical assumption of the model is (an empirically observed) “fatigue 173 

effect” in the input neurons: responses to repeated stimuli are weaker than to 174 

novel stimuli. As these weaker activations are assumed to be insufficient to drive 175 

the inhibitory population, novel and repeated stimuli play different roles in match-176 

to-sample tasks and non-match-to-sample tasks, respectively. 177 

In match-to-sample tasks, repeated items fail to activate the inhibitory 178 

neurons. As a result, the connection weight between the inhibitory neurons and 179 

the output neurons is adjusted only when non-matching, novel items are 180 

presented. Given that “go” responses to non-match items are not reinforced in 181 

match-to-sample tasks, the strength of the connections between the inhibitory 182 

neurons and go responses is increased relative to the strength of the connections 183 
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between the inhibitory neurons and no go responses. (The strength of the 184 

connections between the inhibitory neurons and no go responses does not change 185 

as no learning takes place if the bee refuses to “go” for a stimulus to begin with.) 186 

In non-match-to-sample tasks, repeated items still fail to activate the 187 

inhibitory neurons, so that learning occurs only with non-matching, novel items. 188 

However, in non-match-to-sample tasks, connections between the inhibitory 189 

neurons and go responses are weakened, relative to the connections between the 190 

inhibitory neurons and no go responses.  191 

In other words, the inhibitory population learns to select between go and 192 

no-go responses, based on the frequency with which the responses are responses 193 

are reinforced when it is activated by novel, non-matching stimuli. It thus detects 194 

the correlation between the presence of rewards and input from non-repeated 195 

stimuli.  196 

Impressively, these simple computational principles are sufficient to allow 197 

the model toe generalize the sameness-relations to untrained items; for example, if 198 

the model is trained in delay (non-) match-to-sample task with, say, orientations, 199 

it would transfer this learning to a task with, say, colors.  200 

However, there are four situations that raise the question of whether this 201 

model would appropriately account for sameness-detection in grammar-learning 202 

situations. First, it is unclear to what extent this model can discriminate matching 203 

from non-matching pairs when the elements of the pair are presented 204 

simultaneously (Martinho & Kacelnik, 2016). This is because the model relies on 205 

a decrease in representational strength of items presented repeatedly, and, if 206 

identical items are presented simultaneously, no such decrease can occur (though 207 
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this issue might be solved if organisms attend to the items sequentially). 208 

Second, and critically, humans and some other animals can learn 209 

sameness-relations from positive evidence alone, in the absence of reinforcement 210 

(Marcus, Vijayan, Rao, & Vishton, 1999).  211 

Third, and relatedly, Cope et al.’s (2018) model learns in a fundamentally 212 

different way from humans. Specifically, the model learns about non-matching 213 

items. In match-to-sample tasks, it learns to increase the inhibition of “go” 214 

responses to non-match stimuli; in non-match-to-sample tasks, it learns to 215 

decrease the inhibition of “go” responses to non-match stimuli. In contrast, 216 

humans learn predominantly about sameness rather than difference relations, and, 217 

to the extent that they represent difference relations, they represent them as 218 

negations of sameness relations (Hochmann, Carey, & Mehler, 2018; Hochmann, 219 

Mody, & Carey, 2016).  220 

Fourth, the model does not produce representations of sameness or 221 

differences that can be used for further processing. For example, in Marcus et al.’s 222 

(1999) discrimination between AAB and ABB, the critical distinction was not 223 

whether the strings contained a repetition, but rather where in the strings the 224 

repetition was located. As a result, learners had to bind the output of the sameness 225 

detection computations to some kind of representation of sequential positions, 226 

which seems beyond the representations produced by Cope et al.’s (2018) model.  227 

228 
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